Chemistry Behind Fireworks

1144 Words5 Pages
Chemistry behind Fireworks Did you know that when you see a commercial fireworks display you are looking at chemistry in action. You may have asked yourself “I wonder what is going on to make all those pretty colors and patterns” It is controlled chaos!! I tell you. Let us break this down to the basic we will start with a typical shell. Starting at the bottom we have a lifting charge which contains good ole black powder. The lifting charge gets the party started by creating an explosion after it is ingnited by the fuse. An explosion occurs which produces hot rapidly expanding gases . This is an example of the “Law of Volumes” which is an experimental gas law which describes how gases tend to expand when heated. Since all the kenetic energy is contained in a tube the shell has no place to go but up. This is Newton’s third law in action which states (in laymans terms) “for every action there is an opposite and equal reaction”. The next two stages in the process happen almost simultaniously the bursting charge, explodes out ward dispersing the pellets or stars which give us our colors and patterns. This happens when the ariel shell is at the apex of its climb via a time delay fuse. Chemical Agents Oxidizer, what is an oxidizer? The word "burning" describes the oxidation of a fuel in air. A campfire, for instance, uses oxygen from the air to turn wood (cellulose) into steam (H2O) and carbon dioxide (CO2), among other things. So why do fireworks need an oxidizer? Simply because our atmosphere doesn't provide the chemicals with enough oxygen (O2) to sustain the rapid rate of burning that fireworks require in order to give off color, shoot into the air, or explode. Fuels,The most commonly used fuel would be gunpowder, also commonly known in the pyrotechnic industry as black powder. The fuel source is also known as the reducing agent in a pyrotechnic
Open Document