Write a pseudocode statement that declares the variable cost so it can hold real numbers. * Dim cost1 As Double = 0 6. Write a pseudocode statement that declares the variable total so it can hold integers. Initialize the variable with the value 0. * Dim cost1 As Integer = 0 7.
In order to find an approximate result, it can be completed by the function F (x) = x/18 for 0 < x < 6 Therefore, the distribution function is F (x) = x-square divided by 36 for 0 < x < 6 If we set this equal to another random number r1 that is between 0 and then R1 = x-square divided by 36 which results to x = 6√ r1 3. In Excel, use a suitable method for simulating the lost revenue for each day the copier is out of service. Because the amount of copies sold each day is a uniform probability distribution between 2000 to 8000 copies, I designated r3 as a random number between 2000 to 8000. In order to find the amount of business lost on a certain day, I took r3 X (repair time), and the lost revenue
16 m/s c. 12 m/s d. 10 m/s 8. The metric prefix for one thousand is a. milli b. centi c. kilo d. mega 9. Fifty milligrams is a. 0.000050 g b. 0.00050 g c. 0.050 g d. 50000 g 10.
A 10 hours B 8.6 hours C 9.6 hours D 9 hours 8 Increase $38 by 15%. A $57.00 B $43.70 C $53.10 D $53.70 8 Δ − 9 What is the correct value of Δ if ----- = −− ? 10 35 A 16 B 24 C 28 D 32 16 A box of 1500 elastic bands costs $28.50. What is the price per elastic band, to the nearest cent? A 1 cent B 2 cents C 19 cents D $1.90 7 2 17 Find % --& .
The first class in a relative frequency table is 50–59 and the corresponding relative frequency is 0.2. What does the 0.2 value indicate? Answer: 0.2 is equal to 1/5 or 20%, 0.2 indicates 20% of the data values are in this particular interval. 3. When you add the values 3, 5, 8, 12, and 20 and then divide by the number of values, the result is 9.6.
To perform the hypothesis test, I used CONVERT as the independent variable and selling price as the dependant variable. MegaStat was used to construct the following data output. Regression Analysis | | | | | | | | | | | | | | r² | 0.150 | n | 35 |
| Cost | Machine Hours | April | $61,255 | 1,189 | May | $82,714 | 1,806 | June | $97,496 | 2,474 | Using the high-low method, determine the variable cost per unit, and the total fixed costs. Select the correct answer. $28.20 per unit and $69,775 respectively. | | | $28.20 per unit and $27,721 respectively. | | | $30.45 per unit and $27,721 respectively.
State the place value of the underlined digit in 6 953 742. A Hundreds C Ten thousands B Thousands D Hundred thousands ( 3. Round off 5 987 341 to the nearest hundred thousand. A 5.8 million C 6.0 million ( B 5.9 million D 6.1 million 4. Which of the following numbers, when rounded off to the nearest thousand, becomes 7 541 000?
= Quine’s tabular: start with minterm, the smallest I Quine’s start = Iterated consensus: complete sum theorem 4.5.1 Iterated complete = Recursive: complete sum theorem 4.6.1 Recursive: complete ENEE 644 1 Quine-McCluskey Method Problem: Given a Boolean function f (may be Problem: (may incomplete), find a minimum cost SOP formula. cost # of literals Q-M Procedure: 1. 2. 2. 3.
Week 3 Pg 210-211 5-1 Bond Valuation with Summary Payments (N = 12; I/YR = YTM = 9%; PMT = 0.08 × 1,000 = 80, FV = 1000) PV = 928.39 5-2 Yield to Maturity for Annual Payments (N = 12; PV = -850; PMT = 0.10 × 1,000 = 100; FV = 1000) YTM = 12.48% 5-6 Maturity Risk Premium r* = 3%; IP = 3%; rT-2 = 6.3%; rT-2 = r* + IP + MRP = 6.3% rT-2 = 3% + 3% + MRP = 6.3% MRP = 0.3% 5-7 Bond Valuation with Semi Annual Payments (N = 16; I/YR = 8.5/2 = 4.25; PMT = 50; FV = 1000) PV=1,085.80 5-13 Yield to Maturity and Current Yield N = 5, PMT = 80, and FV = 1000 Current yield = Ann interest/Current price 0.0821 = $80/PV PV = $80/0.0821 = $974.42 (N = 5, PV = -974.42, PMT = 80, and FV = 1000) = 8.65% 6-6 Double Beta pg 257 If a company’s beta were to double, would its expected return double? If a company’s beta were to double the expected return wouldn’t because an increase in beta would increase a company’s expected return only by the amount equal to the market risk premium multiplied by the change in the beta amount. Pg 258-259 6-1 Portfolio Beta An individual has $35,000 invested in a stock with a beta of 0.8 and another $40,000 invested in a stock with a beta of 1.4. If these are the only two investments in her portfolio, what is her portfolio’s beta? $35,000 0.8 1st Investment, 40,000 1.4 2nd Investment Total $75,000 ($35,000/$75,000)(0.8) + ($40,000/$75,000)(1.4) = 1.12 6-2 Required Rate of Return Assume that the risk-free rate is 6% and that the expected return on the market is 13%.