The Physics Of Snowboarding

4580 Words19 Pages
The Physics Of Snowboarding An understanding of the physics of snowboarding is useful to snowboarders of all skill levels because it allows them to identify those key physics principles enabling them to properly execute certain moves, which is useful from a performance point of view. A snowboarder typically gains speed by converting gravitational potential energy into kinetic energy of motion. So the more a snowboarder descends down a hill, the faster he goes. The two pictures above show a snowboarder going down a mountain. However, since the side of the mountain is very steep, the snowboarder must prevent himself from going too fast and losing control. He does this by skidding his board on the snow, in a controlled zig-zag pattern (shown in the first picture). This creates frictional resistance with the snow and prevents his speed from reaching dangerously high levels. A common snowboarder stunt is to jump off a helicopter and land on the side of a mountain, before racing down. The landing force experienced by the snowboarder is reduced because his normal velocity component relative to the mountain surface, just before landing, is small. This is a result of the side of the mountain being at an inclination (i.e. not flat). In the following section on the physics of snowboarding, skidding will be discussed. Physics Of Snowboarding — Skidding Amateur (less experienced) snowboarders typically skid around their turns. This occurs when the snowboard is tilted on its edge and the exposed base of the board "plows" into the snow head on. Although the skidding can be controlled and the turn successfully executed, it ultimately results in a significant loss in speed, which can be undesirable. This occurs because the "plowing" action generates frictional resistance with the snow, by physically pushing it. This frictional resistance is significantly more than the

More about The Physics Of Snowboarding

Open Document