The first class in a relative frequency table is 50–59 and the corresponding relative frequency is 0.2. What does the 0.2 value indicate? Answer: 0.2 is equal to 1/5 or 20%, 0.2 indicates 20% of the data values are in this particular interval. 3. When you add the values 3, 5, 8, 12, and 20 and then divide by the number of values, the result is 9.6.
7-7 Geometric Sequences as Exponential Functions Determine whether each sequence is arithmetic, geometric, or neither. Explain. 1. 200, 40, 8, … SOLUTION: Since the ratios are constant, the sequence is geometric. The common ratio is 2.
Pick any three problems and find the difference. a. x2 –144 b. 64x2 –81 c. 36x2 –49y2 d. x4 –1 e. 81x4 –1 4. Factor a perfect square trinomial. Pick any two problems and factor each perfect square trinomial.
0.0625mol/0.125M=0.5L=500mL Calculation for preparing the EDTA solution Exercise 6 a. 1L*0.02M=0.02mol 0.02mol*372.24g/mol=7.4g EDTA b. Exact molarity of 7.4448g /1.00L would be .0200 M Exercise 7 a. 0.5M*100*10-3L=0.05mol acetic acid b. 0.05mol/6M=8.3*10-3 L=8.3mL stock solution c. 100mL-8.3mL=91.7mLwater Add 91.7 water to 6M stock solution to prepare 0.5M acetic acid.
o If the longitudes are from different sides of the Greenwich Meridian, (one E and the other W), then the difference between the two longitudes is the sum of the angles. N 200 W 400 E Q P 600 Equator S The difference in longitudes = 400 – ( - 200) = 600. Ex. 2 : Calculate the difference between the two given longitudes. (Note : Sketch a diagram to help you understand better) Example 1.
BMI=25.96 this is what I came up with as my BMI figure in the Kg/Meters. “One Kilogram equal 2.2 Lbs and 1 inch equal .0254 meters”. To convert your height by to inch 1 foot =12 inches: 5 foot *12 inches = 60 inches that is how you come up with the inches. Pounds to Kilograms: 132.50 lbs/2.2 =60.227 kgs which basically means 132.50 is equivalent to 60.227 kilograms. To figure out if your over weight do the formula just like I did above and if you are: •
A(blue) B(orange) C(red) Total Total Mass(g) 28.05g 8.58g 7.3g 43.93g Number 32 11 8 51 Average Mass(g) 0.876g 0.78g 0.913g 0.861g Relative Abundance 0.6275 0.2157 0.1569 1.000 % Percent Abundance 62.75% 21.57% 15.69% 100% Relative Mass(g) 0.5497g 0.1682g 0.143g 0.8608g IV. Data Chart- V. Analysis- 6. Relative abundance is a specific type of particles divided by the total particles expressed as a number while percent abundance is expressed as the percentage of those specific particles within the total particles. When you add up the individual relative abundances, the result is 1.000. When you add up the individual
The inches value shall be converted into decimal division. C = 4d -1/3b C= 4(23,245)-1/3 *(13.5) I plug in the given variables using the order of operations, the exponents will be solved first. C= 4(.035)*(13.5) – Multiply C= .14(13.5) Simplify C= 1.89 – the capsize value is less than 2 b) Solving for D in order to solve this equation I will be using the same formula that was given in the previous problem. C = 4d -1/3b 4d -1/3 b = c c Flipping equation so d is on the left. 4d -1/3 b = c 4d - 13 b = c Divide both sides by 4 and b.
If the base is 30 feet, and the corresponding height is 25 feet, what is its area? 10. Write each percent as a decimal and as a fraction in simplest form: a. 200% b. 135% c. .03% d. .45%
5. If find f(g(x)). 6. Write the slope-intercept form of the equation of the line containing the points (4,7) and 7. Write the equation of the line perpendicular to , passing through the point (6,1).