Metabolism and Oxidative Cellular Respiration

1801 Words8 Pages
Metabolism III: Oxidative Cellular Respiration Introduction Oxidative cellular respiration is composed of series metabolic processes that convert broken down food molecules into usable energy in the form of adenosine tri-phosphate (ATP). The process follows oxidation (catabolic) and reduction (anabolic) pathways. Processes involved are glycolysis, Krebs or tricarboxylic acid (TCA) cycle, and the electron transport chain. One step in the TCA cycle is the enzyme-catalyzed conversion of succinate to fumarate in a redox reaction. In intact cells succinate loses hydrogen ions and electrons to FAD to form fumarate. This step in the TCA cycle will be used to study the rate of cellular respiration under different conditions. (Patriquin, M. Rand, T. 2012). Since DPIP is a reducing dye it will absorb the hydrogen ions and electrons from the redox reaction of the TCA cycle between succinate and fumarate producing a discoloration of the dye. The discoloration is measured in percent transmittance of light over 30minutes at 5 minute intervals. The change in dye color is the associated with cellular respiration activity, and will be used to record the cellular respiration rate in mitochondria isolated from pulverized lima beans (Phaseolus lunatus) and subsequent effects of different substrate concentration, pH, and metabolic inhibitors . If the difference of light percent transmission produced by (DPIP) can be recorded over time associated with the cellular respiration rate then the rate of cellular respiration of mitochondrion in varying substrate concentrations, pH , and metabolic inhibitor solutions can be tested. The results from these experiments can be generalized and applied to other organisms with similar reactions to such substances. Materials and Methods The procedures employed in this laboratory are described in Cell Physiology and Metabolism Lab

More about Metabolism and Oxidative Cellular Respiration

Open Document