Is Technology Moving Too Fast?

649 Words3 Pages
The newest technologies--computers, genetic engineering and the emerging field of nanotech--differ from the technologies that preceded them in a fundamental way. The telephone, the automobile, television and jet air travel accelerated for a while, transforming society along the way, but then settled into a manageable rate of change. Each was eventually rewarded more for staying the same than for radically transforming itself--a stable, predictable, reliable condition known as "lock-in." Computers, biotechnology and nanotech don't work that way. They are self-accelerating; that is, the products of their own processes enable them to develop ever more rapidly. New computer chips are immediately put to use developing the next generation of more powerful ones; this is the inexorable acceleration expressed as Moore's law. The same dynamic drives biotech and nanotech--even more so because all these technologies tend to accelerate one another. Computers are rapidly mapping the DNA in the human genome, and now DNA is being explored as a medium for computation. When nanobots are finally perfected, you can be sure that one of the first things they will do is make new and better nanobots. Technologies with this property of perpetual self-accelerated development--sometimes termed "autocatalysis"--create conditions that are unstable, unpredictable and unreliable. And since these particular autocatalytic technologies drive whole sectors of society, there is a risk that civilization itself may become unstable, unpredictable and unreliable. Perhaps what civilization needs is a NOT-SO-FAST button. Proponents of technological determinism make a strong case for letting self-accelerating technologies follow their own life cycle. Rapid development in computer technology, they point out, has spun off robotics and the Internet--to the great benefit of industry and human
Open Document