Thermo Electric Effect

2113 Words9 Pages
The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates a voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold side, similar to a classical gas that expands when heated; hence inducing a thermal current.This effect can be used to generate electricity, measure temperature or change the temperature of objects. Because the direction of heating and cooling is determined by the polarity of the applied voltage, thermoelectric devices are efficient temperature controllers.The term "thermoelectric effect" encompasses three separately identified effects: the Seebeck effect, Peltier effect and Thomson effect. Textbooks may refer to it as the Peltier–Seebeck effect. This separation derives from the independent discoveries of French physicist Jean Charles Athanase Peltier and Estonian-German physicist Thomas Johann Seebeck. Joule heating, the heat that is generated whenever a voltage is applied across a resistive material, is related though it is not generally termed a thermoelectric effect. The Peltier–Seebeck and Thomson effects are thermodynamically reversible,[1] whereas Joule heating is not. • Seebeck effect The Seebeck effect is the conversion of temperature differences directly into electricity and is named for German-Estonian physicist Thomas Johann Seebeck, who, in 1821 discovered that a compass needle would be deflected by a closed loop formed by two metals joined in two places, with a temperature difference between the junctions. This was because the metals responded differently to the temperature difference, creating a current loop and a magnetic field.

More about Thermo Electric Effect

Open Document