Using another 125-mL flask, 60-mL of 0.3622 M potassium hydroxide in ethanol was deposited. Both flasks were clamped in a temperature-controlled bath regulated at 50.0˚C. The solutions were then set in the temperature bath for ten minutes to equilibrate. An empty 250-mL Erlenmeyer flask was also clamped in the same water bath. In another flask 50-mL of ice water was deposited with three-drop phenolphthalein.
After the effervescence, (15mL) of concentrated HCl was added drop wise to the solution. The mixture was then heated for 15 minutes in a boiling water bath. In two separate small beakers (20mL) of distilled water was placed in one and (20mL) of 6M HCl in the other. Both beakers were placed into an ice bath. After heating, the mixture was cooled to room temperature and filtered by vacuum filtration into a fritted funnel to yield a purple product.
Pour all the filtrate and washings into a 250cm3 volumetric flask. Make up to 250cm3 with 1.0mol dm-3 sulphuric acid(VI) acid. Stopper the flask and invert several times to thoroughly mix the solution. 5. Fill the burette with 0.005mol dm-3 potassium manganate(VII) solution.
Compare the MPs of the once recrystallized and the twice recrystallized trimyristin. After the hydrolysis has proceeded for 45 minutes, allow the flask to cool to RT and pour the contents into a 50 mL beaker containing 8 mL of water. Carefully, in the hood, add dropwise with stirring, 2 mL of concentrated HCl (caution: corrosive liquid/noxious vapors). Myristic acid should precipitate. Cool the beaker in ice water for 10 min, with stirring, and collect the solid by vacuum filtration on a small Hirsch funnel.
Add 1 mL of deionized water to the small test tube containing the precipitate and mix it and centrifuge it for 60 seconds. Then, add the supernatant into the boiling test tube and repeat this step one more time with another 1 mL of deionized water. Acquire a pair of metal test tube holders and heat the boiling test tube to evaporate the water for 15 minutes. Let is cool after and weigh it. Then, calculate a percent yield of zinc iodide and write a balanced chemical equation and determine the limiting
A cotton ball was placed to prevent vapor escape. The tube was placed on the boiling water for seven minutes. During this time, the ice bath was prepared. The tube was placed on the ice bath. Then, it was removed and one drop of room temperature water was added.
For the preparation of the catalyst, tetraethylorthosilicate (TEOS, Merck; purity> 99.9%) was dissolved in anhydrous ethyl alcohol (CH3CH2OH, Merck; purity>99.9%) under stirring for homogenization within 15 min at room temperature. After that, 3-aminopropyl(trimethoxy)silane (APS) was added to the ethanolic solution and mixed for >15 min. Then, Salicylaldehyde was added to the solution of TEOS and APS. The molar ratio of TEOS/APS/ Salicylaldehyde was 5:1:1. Then, Fe(NO3)3·9H2O (0.5mol) was added to above solution and was kept at 80 °C for 12h under reflux.
Part A: Spectroscopy 1. 0.05g of Iron(III) Nitrate in a 50-ml beaker. Add 17 mL of distilled water to the beaker and mix with a stir rod until the solid is completely dissolved. 2. Obtain another 50-mL beaker and add 0.05g of Chromium(III) Nitrate to the beaker.
This solution was added drop wise to the stirred ethanolic solution of benzophenone at room temperature. After all the sodium borohydride being added, the mixture was stirred for a further 10min. Meanwhile, ice water (10ml) was mixed with concentrated hydrochloric acid (1ml) in 50ml beaker. To this the mixture of sodium borohydride and benzophenone was poured slowly into the beaker. The precipitate was collected using suction filtration and washed with 2 x 5ml portions of water.
Then, 3.4 g of ammonium sulfate was slowly added to the supernatant 1 as it was stirred for 15 min to achieve 50% saturation (85g/L of solution). The supernatant was then centrifuged at 9000 x g and 40C for 15 min and 5 ml of the second supernatant was transferred to a conical tube. The obtained second pellet was resuspended in 4 ml of distilled water and transferred into another dialysis