Pythagorean Theorem Essay

576 WordsMay 27, 20133 Pages
Pythagorean Theorem: Finding Treasure Patricia Diggs MAT 221 Introduction to Algebra Instructor Bridget Simmons May 12, 2013 Pythagorean Theorem: Finding Treasure In this paper I will attempt to use the Pythagorean Theorem to solve the problem which reads Ahmed has half of a treasure map which indicates that the treasure is buried in the desert 2x+6 paces from Castle Rock. Vanessa has the other half of the map. Her half indicates that to find the treasure, one must get to Castle Rock, walk x paces to the north, and then walk 2x+4 paces to the east. If they share their information they can find x and save a lot of digging. What is x? The Pythagorean Theorem states that in every right triangle with legs the length a and b and hypotenuse c, these lengths have the relationship of a2 + b2=c2. a=x b=(2x+4)2 c=(2x+6)2 this is the binomials we will insert into our equation x2+(2x+4)2=(2x+6)2 the binomials into the Pythagorean Theorem x2+4x2+16x+16=24x36 the binomial squared. The 4x2can be subtracted out first x2+16x+16=24x+36 now subtract 24x from both sides x2+-8x+16=36 now subtract 36 from both sides x2-8x-20=0 this is a quadratic equation to solve by factoring and using the zero factor. (x- )(x+ ) the coefficient of x2 is one (1). We can start with a pair of parenthesis with an x each. We have to find two factors of -20 know that add up to -8. We know that since 20 is a negative number we know that one will be a positive and one will be a negative number. The two factors that will work are 2 and -10. (x=-10)(x+2)=0 Use the zero factor property to solve each

More about Pythagorean Theorem Essay

Open Document