Nt1310 Unit 7 Lab Report

507 Words3 Pages
BATCH NO-4 DICE WITH 7-SEGMENT DISPLAY ABSTRACT A digital dice circuit can be easily realised using an astable oscillator circuit followed by a counter, display driver and a display. Here we have used a timer NE555 as an astable oscillator with a frequency of about 100 Hz. Decade counter IC CD4026 or CD4033 (whichever available) can be used as countercum- display driver. When using CD4026, pin 14 (cascading output) is to be left unused (open), but in case of CD4033, pin 14 serves as lamp test pin and the same is to be grounded. The circuit uses only a handful of components. Its power consumption is also quite low because of use of CMOS ICs, and hence it is well suited for battery operation. In this circuit two tactile switches S1 and S2 have been provided.While switch S2 is used for initial resetting of the display to ‘0,’ depression of S1 simulates throwing of the dice by a player.…show more content…
This count would normally lie between 0 and 6, since at the leading edge of every 7th clock pulse, the counter is reset to zero. This is achieved as follows. Observe the behavior of ‘b’ segment output in the Table. On reset, at count 0 until count 4, the segment ‘b’ output is high. At count 5 it changes to low level and remains so during count 6. However, at start of count 7, the output goes from low to high state. A differentiated sharp high pulse through C-R combination of C4-R5 is applied to reset pin 15 of IC2 to reset the output to ‘0’ for a fraction of a pulse period (which is not visible on the 7-segment display). Thus, if the clock stops at seventh count, the display will read zero. There is a probability of one chance in seven that display would show ‘0.’ In such a situation, the concerned player is given an

More about Nt1310 Unit 7 Lab Report

Open Document