Pour all the filtrate and washings into a 250cm3 volumetric flask. Make up to 250cm3 with 1.0mol dm-3 sulphuric acid(VI) acid. Stopper the flask and invert several times to thoroughly mix the solution. 5. Fill the burette with 0.005mol dm-3 potassium manganate(VII) solution.
Stoichiometry of Reactions in Solution I. Introduction: Stoichiometry of reactions in solution applied stoichiometry and the idea of a limiting reactant to a reaction in solution. This experiment involved performing aqueous acid and base titrations to determine the mole ratios of four different acid base reactions. Titration is one compound added to a known amount of another compound quantitatively and reacted together to completion (the solution turn pink at the end point). The end point is also called the neutralization point, which means that all the acid has reacted completely with the base and the solution has been neutralized.
This solution was added drop wise to the stirred ethanolic solution of benzophenone at room temperature. After all the sodium borohydride being added, the mixture was stirred for a further 10min. Meanwhile, ice water (10ml) was mixed with concentrated hydrochloric acid (1ml) in 50ml beaker. To this the mixture of sodium borohydride and benzophenone was poured slowly into the beaker. The precipitate was collected using suction filtration and washed with 2 x 5ml portions of water.
A 125mL Erlenmeyer Flask was used to combine (15mL) of concentrated aqueous ammonia and ammonium chloride (0.0467mol, 2.49g). The mixture was stirred till fully dissolved. Colbalt (II) chloride hexahydrate was ground (6.2g) and added in small amounts to the stirring solution (0.0210mol, 5.2g). As the mixture continued to stir (4mL) of 30% hydrogen peroxide was added drop wise to yield a dark warm slurry. After the effervescence, (15mL) of concentrated HCl was added drop wise to the solution.
Gravimetric Determination of Sulfate Purpose The purpose of this lab is to determine the percentage of sulfate in the hydrate by precipitating the sulfate as barium sulfate. Materials Filler paper Sodium sulfate Graduated cylinder Bunsen burner Watch glass Beakers (250 mL, 400 mL) Rubber bulb Graduated pipette Beaker tongs Funnel Filter Paper Sodium Sulfate Drying oven Wash bottle Stirring rod Silver nitrate Hydrochloric acid Distilled water Small test tube Procedures First, .4861 grams of sodium sulfate was placed into a clean 400mL beaker. Exactly 200mL of water and 1mL of HCl was added to the same beaker. A watch glass was placed on the beaker and the solution was heated using the Bunsen burner to a gentle boil. The watch glass was removed with the beaker tongs.
APPARATUS: Burette (50 cmᶾ), Pipette (25 cmᶾ), two conical flasks (250 cmᶾ), two beakers (250 cmᶾ), funnel, wash bottle, retort stand, boss and clamp, evaporating dish, pipette filler, hot-plate. MATERIALS: Approximately 2.0 mol dmˉ³ hydrochloric acid, 1.0 mol dmˉ³ sodium hydroxide, methyl orange indicator. METHOD: 1. Firstly, the burette was rinsed with a little hydrochloric acid and filled up to just above the zero mark. 2.
Introduction A titration was carried out in this experiment to find the concentration of hydrochloric acid is an unknown solution. The aim of this experiment is to determine the number of moles of sodium hydroxide in hydrochloric acid and then to determine the number of moles of sodium hydroxide present in gastric juices. Titration, or volumetric analysis, is a common laboratory procedure for the analysis of substances and solutions. In a titration, the analyst determines the volume of a solution, called a titrant, that reacts exactly with a known weight or volume of another substance. This reaction is carried out by adding a solution of reactant hydrochloric acid from a burette to a solution of sodium hydroxide until just sufficient of hydrochloric acid has been added to react with all of the sodium hydroxide.
As for endothermic the reactions pulls in energy and makes it cold to touch. The other experiment measured the pH level in the reaction. The reaction consisted of sodium hydroxide and hydrochloric acid also to see at which point the reaction becomes neutralized. Neutralization is a reaction between an acid and a base forming a salt and water even tho you can’t see the salt due to the salt dissolving into the solution and the pH level of the reaction around level 7 and has a green sometimes yellow colour when the universal indicator is added. The neutralization gap shows how small the gap is to make the reaction neutral.
Add 0.5 ml concentrated HCl and 1.0 ml 15% KI solution. Mixed exactly 1 minute and leave for 5 minutes in a dark place. Add 0.5 ml starch solution, 20 ml distilled water. Mix and titrate with sodium thiosufate solution. Calculate the exact normality of Na2S2O3 knowing that in this chemical reaction 1 gram-equivalent of K2Cr2O7 react with 1 gram-equivalent of Na2S2O3 (1 mole K2Cr2O7 react with 6 moles Na2S2O3).
Title : Reaction of Carboxylic Acids Objective : To Determine The Reaction of Carboxylic Acids Procedure : As referred to Lab manual. Results: A. Salt Formation |Compound |Solvent |Solubility | |Benzoic Acid |Cold Water |Partially soluble | |Benzoic Acid |10 % NaOH |Soluble | B. Salt Hydrolysis Sodium acetate solution changed the color of litmus from red to blue. C. Reaction With Sodium Carbonate Observation : A lot of gas bubbles was released.