The synthesis of NaCl further identified the ionic compound by reacting sodium hydroxide and hydrochloric acid and obtaining solid sodium chloride. The synthesized compound formed was used to perform another flame test and the chloride anion test, which further solidified the identification of NaCl as the ionic compound. Introduction The purpose of the experiment was to identify unknown ionic compound
Write a hypothesis on what you think will happen when water is added. 3. Fill the test tube with two thirds of water and record the results. Copper (II) Sulphate Solution and Iron Nail 1. Record physical properties of the copper (II) sulphate
The purpose of this lab is to focus on how to make zinc iodide in a different way using compounds instead of elements, which are barium iodide and zinc sulfate. We will see if the reaction between these two compounds will occur and make a prediction by writing a chemical equation. The procedures for this lab are to place a small test tube inside a 50mL beaker and weigh it. Then, using a spatula, add 0.45±0.03 g of zinc sulfate heptahydrate into the small test tube and record the mass. After that, dissolve the sample in 2 mL of deionized water and shake the test tube for 1 to 1 ½ minutes to dissolve the solid.
Computer Additivity of Heats of Reaction: Hess’s Law 18 (1) Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. (2) Solid sodium hydroxide reacts with aqueous hydrochloric acid to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) ) + Cl–(aq) → H2O(l) + Na+(aq) + Cl–(aq) ∆H2 = ? OBJECTIVES • • • • In this experiment, you will Combine equations for two reactions to obtain the equation for a third reaction. Use a calorimeter to measure the temperature change in each of three reactions.
Using a measuring cylinder, add 50cm3 of 1.0mol dm-3 sulphuric(VI) acid to the thyme extract in the conical flask. 8. Titrate the solution in the conical flask with the potassium manganate(VII) solution until a pale pink colour persists for 10 seconds. 9. Repeat the titration until there are two titres within 0.1cm3 of each other.
The purpose of the experiment was to do a solution, which molarity is 0.20 mol/l, from water and an ionic compound. Our ionic compound was zinc sulfate (ZnSO4). Our task was to make one hundred milliliters (100 ml) of the solution. Materials To execute the experiment we used the following equipment: - a beaker - a volumetric flask - a plastic spoon - a scale - a pipette - a funnel - a cork cap We also used solid zinc sulfate (ZnSO4), and distilled and deionized water to make the solution. Calculations To figure out the amount of zinc sulfate that we had to add to the water, so that the molarity of the solution would be 0.20 g/mol, we did the following steps: First we calculated the amount of the zinc sulfate to add in moles.
How could it have been improved? (b) Based on your evidence, which anion could be used to precipitate most of the metal cations? (c) Which anion could be used to selectively remove silver ions from solution? Why? (d) What evidence suggests that nitrate compounds are soluble in water?
Obtain a clean-dry test tube. Place 0.3g of the unknown substance in the test tube. Next, add 10mL of distilled water to the test tube. Mix with a stirring rod until unknown is dissolved. 2.
In the first part, five 100 mL flasks of 5 mL ligand solution, 5 mL 2 M sodium acetate, 4 mL 3 M NH2OH, and 1-5 mL Fe2+ solution are diluted with water. The absorption spectrum for varying concentrations of Fe2+ are measured using a spectrophotometer and the data is graphed in Excel. The slope of the line is ε in the Beer-Lambart equation A = εcl. In the second part of the experiment, eleven flasks containing diluted stock solutions of Fe2+ and ligand are mixed with 5 mL 2 M sodium acetate and 4 mL 3 M NH2OH and diluted with water. The absorption spectrum is measured using a spectrophotometer and the data is graphed in Excel.
Hydrate Lab The purpose of this lab is to analyze the percent water in a crystalline hydrate and to indentify the hydrate from a list of possible unknowns. The solid hydrate will be heated to remove the water, and the percent can be found by measuring the mass of the solid before and after heating. The hydrate will be indentified by comparing the percent water in the hydrate with the percent water calculated for the possible unknown. Before the lab there are pre-lab questions: 1. Describe the three general safety rules for working with a Bunsen burner.