We used a vernier caliper to obtain the diameter of those two and therefore, the radius. When adding all the numbers together, we found that the true radius(r) of the orbit was 0.139 m. To find our tension, we needed to find out how much weight we needed to pull the object towards away from the spring and on the tip of the pointer as shown below. The tension needed to pull the mass on the tip of the pointer 1.05 kg. In theory the force of acceleration needed to pull the mass to same exact spot should equal the force of tension multiplied by the force due to gravity. Using Newton’s second law, F=ma, we know that the
m_2 a=m_2 g-T T=m_2 g-m_2 a Equating the tensions m_1 a=m_2 g-m_2 a m_1 a+m_2 a=m_2 g (m_1+m_2 )a=m_2 g a=(m_2 g)/(m_1+m_2 ) The acceleration is the same acceleration described in the kinematics equation a=2s/t^2 For a body starting from rest, s is the distance traveled by the cart and t is the time of travel. We had objectives to meet by the end of the experiment. First of which was to verify the direct proportionality of acceleration and net force if the mass of the body is constant. Meaning, if the acceleration value increases, the net force of the mass must increase as well, given the fact that the mass of the body is constant. The second is to verify the inverse
Newton’s Second Law and the Work-Kinetic Energy Theorem October 13, 2010 Abstract This experiment utilizes an air track first as an inclined plane with the slider accelerating due to gravity and second as a level surface with the slider accelerating due to the pull of an attached free-falling object of known mass. In both cases, the Work performed is calculated based on formulas for mechanical work and for kinetic energy. The two results are compared. The first part yielded an average acceleration of 0.715 m/s2 (a 1.58% error) and the average result for the Work performed was 0.0204 N*m with only a 0.9% difference. The second part suffered critical errors due to improper data and the results are not significant or useful.
Lab 8: Ballistic Pendulum Objective: In this lab we used three methods to measure the initial velocity of a projectile from a spring gun. In the first experiment we used kinematics alone to determine the mean initial velocity for the projectile. In the second experiment we added a simple ballistic pendulum to derive the velocity of the projectile using the principles of conservation of momentum and energy. In the third experiment we used a physical pendulum, the equations for conservation of angular momentum and energy, and the equation for the period to determine the initial velocity of the projectile. Description: In these series of experiments the apparatus we used was a spring gun that for the first experiment shot a steel ball freely which eventually struck the floor.
Measure 8 different clays with different mass, 10g, 15g, 20g, 25g, 30g, 35g, 40g, 45g 3. Measure the height between the top of where we are going to drop the parachute and the ground with a meter ruler. It is measured as 2.56m. 4. One person will be in charge of releasing the parachute, while the other would be recording data and timing how long the parachutes would take to hit the ground.
However, if an object were shot out of a gun for example , in a horizontal direction , then the force of gravity would directly act upon the object on its descent . When an object is projected at a specific angle, then your v is no longer v. In other words your final velocity is not equal to your initial velocity . The equation v=v cos is used. Experiment overview: In this lab , my partner and I performed multiple attempts to calculate the average distance a projectile would travel before hitting the ground when shot out of a gun in a horizontal direction . In the first trial , we shot the circular metal ball out of the gun at an angle parallel to the ground(0).The gun , itself , had three levels of compression .
Because ‘F’ and ‘x’ are directly proportional, a graph of ‘F’ vs ‘x’ is a line with slope ‘k’ A mass on a spring is a simple harmonic oscillator which is an object that oscillates the equilibrium point and experiences a restoring force proportional to the object’s displacement. The time it takes for a spring to complete an oscillation is called the period of oscillation, ‘T’. The period of oscillation of a simple harmonic oscillator that is described by Hooke’s Law is: T=2π√(m/k). This formula shows that as the mass, ‘m’, increases and the spring
Physics 11 IB The Simple Pendulum Rajesh Swaminathan June 18, 2006 1 Aim To investigate the motion of a simple pendulum and to derive a value for g, the acceleration due to gravity. 2 Planning 2.1 Hypothesis By using other methods to determine the acceleration due to gravity g, the value of g should be close to 9.8 m/s2. 2.2 Procedure 1. Measure, record and average a reasonable number of measurements of the period T for 6 to 8 different lengths. 2.
Newton’s Second Law Lab Purpose: The purpose of this experiment was to determine the relationships between mass, force and acceleration as well as to prove Newton’s second law Hypothesis: It was hypothesized that there would be an inverse relationship between acceleration and mass; as the value of the mass increased the acceleration decreased. As well it is hypothesized that there would be a direct relationship between the net force and acceleration; as the net force increases the acceleration increases as well. Materials & Method: The materials that were required to do the experiment were a metre stick; its purpose was to measure the amount of string that is going to be used to drag the cart. Next equipment needed for the lab was a dynamic cart; it was going to be dragged by the string with a mass on the other end and will find relationships between these two. Also string (about 75cm) was needed in this experiment which would help pull the cart with the help of the masses that were used.
Megan Lankford 10/11/12 Physics Lab: The Ballistics Pendulum and Projectile Motion Introduction/Objective In this lab, our focus was to identify the initial velocity of a metal ball by firing it as a projectile and compare it with the velocity. Also, we had to determine the initial velocity of the ball fired into the ballistics pendulum and its relativity to the initial velocity in which the ball plus pendulum moves after firing. This lab demonstrates the principle of conservation of momentum and projectile motion and how they are relative to each other. Procedure 1 To being our experiment, we had to weigh the metal ball and pendulum to give us our mass and help us determine the before and after effects of the collision. After we had taken all of our measurements we had to decide which setting we were going to fire the ball at.